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Abstract

Robot learning from raw trajectory data is challenging due to temporal and spatial inconsisten-
cies. A key problem is extracting conceptual task structure from repeated human demonstrations.
In prior work, we proposed a Switched Linear Dynamical System (SLDS) characterization of the
demonstrations; the key insight being that switching events induce a density over the state space. A
mixture model characterization of this density, called Transition State Clustering, extracts the latent
task structure. However, robotics is increasingly moving towards state spaces derived from vision,
e.g., from Convolutional Neural Networks (CNNs). This workshop paper describes an extension
called Transition State Clustering with Deep Learning (TSC-DL), where we explore augmenting
kinematic and dynamic states with features from pre-trained Deep CNNs. We report results on two
datasets comparing architectures (AlexNet and VGG), choices of convolutional layer for featuriza-
tion, dimensionality reduction techniques, visual feature encoding. We find that TSC-DL matches
manual annotations with up to 0.806 Normalized Mutual Information (NMI). We also found that
use of both kinematics and visual data results in increases of up-to 0.215 NMI compared to using
kinematics alone. Video results at: http://berkeleyautomation.github.io/tsc-dl/

1. Introduction

There are a number of techniques to use human demonstrations to facilitate robot learning such
as imitation learning Kruger et al. (2010); Calinon et al. (2010b), inverse reinforcement learning
Abbeel and Ng (2004), and skill-learning Konidaris and Barto (2009). However, even in a consistent
environment, learning from raw trajectory data is challenging Krishnan et al. (2015). Tasks can
be multi-step procedures that have complex interactions with the environment. It is, therefore,
important to first extract the salient events common to a set of successful demonstrations. Such
events can highlight inconsistencies, segment a complex task into simpler subtasks, and classify
trajectories.
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One approach for modeling such events is the Transition State model of Krishnan et al. (2015).
Each demonstration is a realization of a switched linear dynamical system in the state space X with
i.i.d zero-mean additive noise process W (t):

x(t +1) = A(t)x(t)+W (t) : A(t) ∈ {A1, ...,Ak}
The model further argues that switching events, i.e., when the transition law A(t) 6= A(t + 1), hap-
pen stochastically as a function of the current state. Thus, the observed transitions from repeated
demonstrations induce a probability density f over the state space X . The modes of the density,
which intuitively represent a propensity of a state x to trigger a switch, are called Transition States.
The inference is tractable for some model families of f , for example if it is a Gaussian Mixture
Model (GMM), then these modes can be learned with Expectation Maximization.

The efficacy of the transition state model depends on the representation of the state space. To
satisfy the model assumptions, trajectories in X must be locally linear and the density f must be
from a model family for which parameter inference (or approximate parameter inference) is possi-
ble. For kinematic trajectories (e.g., X ⊆ SE(3)), there is empirical intuition that these assumptions
hold . However, the growing maturity of convolutional neural networks (CNNs) has facilitated an
increasing use of visual features in robotics . Kinematic recordings from demonstrations are of-
ten accompanied by fixed camera video data. Furthermore, the availability of pre-trained models,
through frameworks such as CAFFE, has allowed robotics to take advantage of the growing corpora
of natural images to bootstrap robotic visual perception. This workshop paper presents an initial ex-
ploration and discussion applying the transition state model to multimodal trajectories of kinematics
and fixed camera video featurized with pre-trained CNNs. We call this framework Transition State
Clustering with Deep Learning.

There are a number of key feature representation questions regarding the use of visual features
from CNNs and the transition state model. CNNs represent an immense increase in dimensionality
(i.e., > 100,000) compared to kinematics/angular configuration spaces (typically < 100). Den-
sity estimation and parameter estimation are known to be difficult in sparse high-dimensional data.
Consequently, we study whether there is a low-dimensional representation that is sufficiently rich
to predict visually important transition events; experimentally comparing dimensionality reduction
techniques such as Principal Component Analysis, Gaussian Random Projections, and Canonical
Correlation Analysis. Next, we explore whether trajectories in the low dimensional space can be
modeled as locally linear. Finally, we evaluate the impact of architecture (AlexNet vs. VGG) and
spatiotemporal encoding (VLAD).

Our empirical results suggest that indeed the transition state model can apply to visual state
spaces. The insight that trajectories of apparently very high dimensional CNN features lie on low
dimensional manifolds is not new.However, these results surprisingly suggest the transferability
of this property where convolutional layers from natural image classification CNNs are applied to
videos from robotic demonstrations in novel lab environments. Next, we find that in some tasks the
fidelity of the image trajectories is sufficient for transition state learning without kinematics data.
Finally, we present a number of results describing the hyper-parameter trade-off space and empirical
justification for selecting dimensionality reduction and feature encoding parameters.

2. Related Work and Background

1. Learning Switched Systems: Many models for learning switched state spaces either implicitly
or explicitly assume that the dynamics are locally linear. It is important to note that locally linear
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dynamics does not imply linear motions, as spiraling motions can be represented as linear systems.
In Elhamifar and Vidal (2009), videos are modeled as transitions on a lower-dimensional linear
subspace and segments are defined as changes in these subspaces. Willsky et al. (2009) proposed
BP-AR-HMM. This model is explicitly linear by fitting a autoregressive model to time-series, where
time t +1 is a linear function of times t− k, . . . , t, to windows of data. The linear function switches
according to an HMM with states parametrized by a Beta-Bernoulli model (i.e., Beta Process).

In fact, even the works that apply Gaussian Mixture Models for skill segmentation Calinon et al.
(2010a); Lee et al.; Krüger et al. (2012), implicitly fit a locally linear dynamical model. Moldovan
et al. (2015) proves that a Mixture of Gaussians model is equivalent to Bayesian Linear Regression;
i.e., when applied to a time window it fits a linear transition between the states. Local linear models,
including the one in this work, can be extended to locally non-linear models through kernelization
or increasing time window sizes. Calinon et al. (2010b) uses state-space segmentation to teach a
robot how to hit a moving ball. They use visual features through a visual trajectory tracking of a
ball. The visual sensing model in Calinon et al. is tailored to the ball task, and in this paper, we use
a set of general visual features for all tasks using CNNs.

2. Visual Gesture Recognition: A number of recent works, attempt to segment human motions
from videos Hoai et al. (2011); Tang et al. (2012); Jones and Shao (2014); Wu and Shao (2014);
Wu et al. (2015).Tang et al. and Hoai et al. proposed supervised models for human action seg-
mentation from video. Building on the supervised models, there are a few unsuperivsed models for
segmentation of human actions: Jones and Shao (2014); Yang et al. (2013); Wu and Shao (2014);
Wu et al. (2015). Jones and Shao (2014) restricts their segmentation to learning from two views
of the dataset (i.e., two demonstrations). Yang et al. (2013) and Wu et al. (2015) use k-means to
learn a dictionary of primitive motions, Krishnan et al. (2015) found that transition state clustering
outperforms a standard k-means segmentation approach. In fact, our model is complementary to
these works and would be a robust drop-in-replacement for the k-means dictionary learning step.
The approach taken by Di Wu et al. is to parametrize human actions using a skeleton model, and
they learn the parameters to this skeleton model using a deep neural network. In this work, we
explore using generic deep visual features for robotic segmentation without requiring task-specific
optimization such as skeleton or action models using in human action recognition.

3. Deep Features in Robotics: Robotics is increasingly using deep features for visual sensing. For
example, Lenz et al. uses pre-trained neural networks for object detection in grasping Lenz et al.
(2015) and Levine et al. (2015) fine-tune pre-trained CNNs for policy learning. For this reason,
we decide to explore methodologies for using deep features in transition state learning as well. We
believe this is an important first step in a number of robot learning applications.

3. Transition State Clustering: The GMM Case

This section formalizes one variant of the transition state learning problem, when the noise process
W (t) is i.i.d zero-mean Gaussian, and the switching density is a Gaussian Mixture model.

3.1 Transition State Problem

Dynamical System Model: Let D = {di} be the set of demonstrations where each di is a trajectory
x(t) of robot states and each state is a vector in the state-space X ⊆Rd . There is a finite set of d×d
matrices {A1, ...,Ak}, and an i.i.d zero-mean additive noise process W (t) which accounts for noise
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in the dynamical model:
x(t +1) = Aix(t)+W (t) : Ai ∈ {A1, ...,Ak}

Transitions between regimes are instantaneous where each time t is associated with exactly one
dynamical system matrix 1, ...,k

Transition States: Transition states are defined as the last states before a dynamical regime tran-
sition in each demonstration. Each demonstration di follows a switched linear dynamical system
model, therefore there is a time series of regimes A(t) associated with each demonstration.

Therefore, there will be times t at which A(t) 6= A(t + 1). Switching events are governed by
a latent function of the current state S : X 7→ {0,1}, and we have noisy observations of switching
events Ŝ(x(t)) = S(x(t)+Q(t)), where Q(t) is a i.i.d noise process. Thus, across all demonstrations,
the observed switching events induce a probability density f over the state space X . The goal of
transition state learning is to find a mixture model for f that approximately recovers the true latent
function S.

3.2 Transition State Clustering: The Gaussian-GMM Case

Let us assume that W (t) is an i.i.d Gaussian process, S is supported by only finitely many x ∈ X ,
and Q(t) is also an i.i.d Gaussian process. It follows that the density f is a Gaussian Mixture Model.
Under this model, we overview a basic technique for parameter inference. It turns out a particularly
efficient model for parameter inference is a reduction of this problem to hierarchical clustering by
first identifying candidate transitions and then clustering over the candidate transitions.

Identifying Transitions: Suppose there was only one regime, then following from the Gaussian
assumption, this would be a linear regression problem:

argmin
A
‖AXt −Xt+1‖

where Xt is a matrix where each column vector is x(t), and Xt+1 is a matrix where each column
vector is the corresponding x(t + 1). Moldovan et al. Moldovan et al. (2015) proves that fitting a
Jointly Gaussian model to n(t) =

(x(t+1)
x(t)

)
is equivalent to Bayesian Linear Regression.

Therefore, to fit a switched linear dynamical system model, we use a Mixture of Gaussians
(GMM) to n(t). GMMs define clusters based on their most likely mixture assignment. Each learned
cluster denotes a different regime, while co-linear states are in the same cluster. To find transition
states, we move along a trajectory from t = 1, ..., t f , and find states at which n(t) is in a different
cluster than n(t +1). These points mark a transition between clusters (i.e., transition regimes).

Pruning Inconsistency: We consider the problem of outlier transitions, ones that appear only in
a few demonstrations. Each of these regimes will have constituent vectors where each n(t) belongs
to a demonstration di. Transition states that mark transitions to or from regimes whose constituent
vectors come from fewer than a fraction ρ demonstrations are pruned. ρ should be set based on the
expected rarity of outliers. In our experiments, we set the parameter ρ to 80% and show the results
with and without this step.

Transition State Clustering: If we model the states at the transitions as drawn from a GMM
model: x(t)∼ N(µi,Σi), Then, we can fit a GMM again to cluster the state vectors at the transition
states. Each cluster defines an ellipsoidal region of the state-space space.
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3.3 Multiple Sensing Modalities

A Gaussian model in a Euclidean space Rd assumes an L2 metric. However, in a number of cases
the state space contains data from multiple sensing modalities such as vision and kinematics the
L2 metric may not be sensible. We address this problem by adding expanding the GMM hierarchy,
where we first fit a GMM with a subset of variables corresponding modality 1. Then, we partition the
dataset by each transitions most likely mixture. Within each partition, we fit GMM corresponding
to modality 2, and repeating this process until completion.

Modeling Temporal Effects
Time can be modeled as a separate sensing modality. Without temporal localization, the transitions
may be ambiguous. For example, in a “Figure 8" trajectory, the robot may pass over a point twice
in the same task. We define an augmented state space x(t) =

(k(t)
t

)
. Within a state cluster, we

model the times which change points occur as drawn from a GMM: t ∼ N(µi,σi), then we can
apply a GMM to the set of times. This groups together events that happen at similar times during
the demonstrations. The result is clusters of states and times. Thus, a transition state mk is defined
as tuple of an ellipsoidal region of the state-space and a time interval.

Visual Features
Similarly, visual features can be modeled with this technique. We define an augmented state space
x(t) =

(k(t)
z(t)

)
, where k(t) ∈ Rk are the kinematic features and z(t) ∈ Rv are the visual features.

Within each kinematics state cluster, we model the visual which change points occur as drawn from
a GMM: z∼ N(µi,σi), then we can apply a GMM to the set of visual states.

3.4 Practical Considerations

Dirichlet Process GMM: One challenge with mixture models is hyper-parameter selection, such as
the number of mixtures. Recent results in Bayesian statistics can mitigate some of these problems.
We use the Dirichlet Process Gaussian Mixture Model at the multiple levels of the hierarchical
clustering to set the number of mixtures using Variational EM.
Rolling Temporal Window: To better capture hysteresis and transitions that are not instantaneous,
in this current paper, we use rolling window states where each state x(t) is a concatenation of T
historical states. We varied the length of temporal history T and evaluated performance of the TSC-
DL algorithm for the suturing task using metric defined in Section 5.1 as shown in Figure 1. We
empirically found a sliding window of size 3, i.e., x(t) =

(k(t)
z(t)
)
, as the state representation led to

improved segmentation accuracy while balancing computational effort.
Skill-Weighted Pruning Demonstrators may have varying skill levels leading to increased outliers,
and so we extend our outlier pruning to include weights. Let, wi be the weight for each demonstra-
tion di ∈ D, such that wi ∈ [0,1] and ŵi =

wi∑
wi

. Then a cluster Ckk′ is pruned if it does not contain
change points CP(n) from at least ρ fraction of demonstrations. This converts to:∑

di

ŵi1
( ∑

n:N(n)∈di

1(CP(n) ∈Ckk′)≥ 1
)
≤ ρ

4. Transition State Clustering With Generalized Visual Features

We extend our prior work with states defined with generalized visual features from CNNs, and
present the details of the TSC-DL in Algorithm 1. We define an augmented state space x(t) =

(k(t)
z(t)

)
,

where k(t) ∈ Rk are the kinematic features and z(t) ∈ Rv are the visual features. We use layers
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Algorithm 1: TSC-DL: Transition State Clustering with Deep Learning
Data: Set of demonstrations:D
Parameters: pruning factor (ρ), time window (w), PCA dim (dp), hyperparams (α1,α2,α3,α4)
Result: Set of Predicted Transitions Ti, ∀di ∈D

1 foreach di ∈D do
2 zi← VisualFeatures (di,w,dp) and ki← KinematicFeatures (di,w)

3 xi(t)←
(ki(t)

zi(t)

)
∀t ∈ {1, . . . ,Ti}

4 x̄i(t)←
[

x(t +1)T , x(t)T , x(t−1)T
]T
, ∀t and N←

[
NT , x̄i(1)T , . . . , x̄i(Ti)

T
]T

5 CCP = DPGMM(N,α0) // Cluster to get Change Points

6 foreach N(n) ∈ CCP
i , N(n+1) ∈ CCP

j , i 6= j do CP←CP∪{N(n)}
7 C1 = DPGMM(CP,α1) // Cluster over Visual Feature Subspace

8 foreach Ck ∈ C1 do
9 CP(Ck)←{CP(n) ∈Ck,∀n ∈ {1, . . . , |CP|}}

10 Ck2← DPGMM(CP(Ck),α2) // Cluster over Kinematic Feature Subspace

11 foreach Ckk′ ∈ Ck2 do
12 if

∑
di

1
(∑

n:N(n)∈di
1(CP(n) ∈Ckk′)≥ 1

)
≤ ρ|D| then Ck2← Ck2 \{Ckk′} // Pruning

13 ∀ di ∈D do Ti← Ti∪{CP(n) ∈Ckk′ ,∀n : N(n) ∈ di} // intra-cluster transitions ∀ di

14 foreach di ∈D do
15 Repeat steps 1-13 for D′ = D \di

16 T j← T j ∪T (i)
j , {∀ j : d j ∈D′} // T (i)

j : ith iteration

17 foreach di ∈D do Ti← DPGMM(Ti,α4)// Cluster over time to predict Transition Windows

18 return Ti, ∀di ∈D

from a pre-trained Convolutional Neural Network (CNNs) to derive the features frame-by-frame.
We found that use of these features requires a number of pre-processing and post-processing steps;
in addition to a number of design choices within the CNN such as which convolutional layer(s) to
use for composing the visual featurization.

Pre-processing: CNNs are trained on static images for image classification, and as a result their
features are optimized for identifying salient edges and colors. However, they do not capture tem-
poral features and do differentiate the between robot and workspace features. Furthermore, since
we aggregate across demonstrations, we need to ensure that these features are largely consistent.
To reduce variance due to extraneous objects and lighting changes, we crop each video to capture
the only the relevant workspace where robot manipulation occurs. Then, the videos are rescaled
to 640x480 along with down-sampling to 10 frames per second for computational efficiency. All
frames in the videos are normalized to a zero mean in all channels (RGB) individually Krizhevsky
et al. (2012); Simonyan and Zisserman (2014). All of pre-processing were preformed with open
source ffmpeg library.

Visual Featurization: Once the images were pre-processed, we applied the convolutional filters
from the pre-trained neural networks. Yosinski et al. (2014) note that CNNs trained on natural im-
ages exhibit roughly the same Gabor filters and color blobs on the first layer. They established that
earlier layers in the hierarchy give more general features while later layers give more specific ones.
In our experiments, we explore the level of generality of features required for segmentation. In
particular, we explore two architectures designed for image classification task on natural images:
(a) AlexNet: Krizhevsky et al. (2012) proposed multilayer (5 in all) a CNN architecture, and
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(b) VGG: Simonyan and Zisserman (2014) proposed an alternative architecture termed VGG
(acronym for Visual Geometry Group) which increased the number of convolutional layers sig-
nificantly (16 in all).
We also compare these features to other visual featurization techniques such as SIFT and SURF for
the purpose of task segmentation using TSC-DL.

Visual Feature Encoding: After constructing these features, the next step is encoding the results
of the convolutional filter into a vector z(t). We explore three encoding techniques: (1) Raw values,
(2) Vector of Locally Aggregated Descriptors (VLAD) Arandjelovic and Zisserman (2013), and (3)
Latent Concept Descriptors (LCD) Xu et al. (2014).

Visual Feature Dimensionality Reduction: After encoding, we feed the CNN features z(t), often
in more than 50K dimensions, through a dimensionality reduction process to boost computational
efficiency. This also balances the visual feature space with a relatively small dimension of kinematic
features (< 50). Moreover, GMM-based clustering algorithms usually converge to a local minima
and very high dimensional feature spaces can lead to numerical instability or inconsistent behavior.
We explore multiple dimensionality reduction techniques to find desirable properties of the dimen-
sionality reduction that may improve segmentation performance. In particular, we analyze Gaussian
Random Projections (GRP), Principal Component Analysis (PCA) and Canonical Correlation Anal-
ysis (CCA) in Table 1. GRP serves as a baseline, while PCA is used based on widely application in
computer vision as in Xu et al. (2014). We also explore CCA as it finds a projection that maximizes
the visual features correlation with the kinematics.

Robust Temporal Clustering: To reduce over-fitting and build a confidence interval as a measure
of accuracy over the temporal localization of transitions, we use a Jack-knife estimate. It is calcu-
lated by aggregating the estimates of each N− 1 estimate in the sample of size N. We iteratively
hold out one out of the N demonstrations and apply TSC-DL to the remaining demonstrations.
Then, over N−1 runs of TSC-DL, N−1 predictions are made ∀di ∈D. We temporally cluster the
transitions across N− 1 predictions, to estimate final transition time mean and variance ∀di ∈ D.
This step is illustrated in step 15-17 of Algorithm 1.

5. Experiments

5.1 Evaluation Metrics

It is important to note that TSC-DL is an unsupervised algorithm that does not use input labels.
Therefore, we evaluate TSC-DL both intrinsically (without labels) and extrinsically (against human
annotations).

Intrinsic metric: The goal of the intrinsic metric is compare the relative performance of different
featurization techniques, encodings, and dimensionality reduction within TSC-DL without refer-
ence to external labels. The intrinsic metric we use measures the “tightness" of the transition state
clusters. This metric is meaningful since we require that each transition state cluster contains tran-
sitions from a fraction of at least ρ of the demonstrations, the tightness of the clusters measures
how well TSC-DL discovers regions of the state space where transitions are grouped together. This
is measured with the mean Silhouette Score (denoted by ss), which is defined as follows for each
transition state i:

ss(i) =
b(i)−a(i)

max{a(i),b(i)}
, ss(i) ∈ [−1,1]
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if transition state i is in cluster C j, a(i) is defined the average dissimilarity of point i to all points in
C j, and b(i) the dissimilarity with the closest cluster measured as the minimum mean dissimilarity
of point i to cluster Ck, k 6= j. We use L2-norm as the dissimilarity metric and re-scale ss ∈ [0,1]
for ease of comparison.

Extrinsic metric: To calculate an absolute measure of similarity of TSC-DL predictions T with re-
spect to manual annotations L, we use Normalized Mutual Information (NMI) which measures the
alignment between two label assignments. NMI is equal to the KL-divergence of the joint distribu-
tion with the product distribution of the marginals; intuitively, the distance from pairwise statistical
independence. NMI lies in [0,1], where 0 indicates independence while 1 is perfect matching. It is
defined as,

NMI(T ,L) = I(T ,L)√
H(T )H(L)

, NMI(T ,L) ∈ [0,1]

5.2 Evaluation of Visual Featurization

In our first experiment, we explore different visual featurization, encoding, and dimensionality re-
duction techniques. We applied TSC-DL to our suturing experimental dataset, and measured the
silhouette score of the resulting transition state clusters. Table 1 describes the featurization tech-
niques on the vertical axis and dimensionality reduction techniques on the horizontal axis. Our
results suggest that on this dataset features extracted from the pre-trained CNNs resulted in tighter
transition state clusters compared to SIFT features with a 3% lower ss than the worst CNN result.
Next, we found that features extracted with the VGG architecture resulted in the highest ss with a
3% higher ss than the best AlexNet result. Qualitative results of TSNE plots of a subsequence is
shown in Figure 2.

We also found that PCA for dimensionality reduction gave the best ss performance 7% higher
than the best GRP result and 10% higher than best CCA result. Because CCA finds projections
of high correlation between the kinematics and video, we believe that CCA discard features infor-
mative features resulting in reduced clustering performance. We note that neither of the encoding
schemes, VLAD or LCD significantly improve the ss.

There are two hyper-parameters for TSC-DL which we set empirically: sliding window size (T
= 3), and the number of PCA dimensions (k = 100). In Figure 1, we show a sensitivity plot with the
ss as a function of the parameter. We calculated the ss using the same subset of the suturing dataset
as above and with the VGG conv5_3 CNN. We found that T = 3 gave the best performance. We
also found that PCA with k = 1000 dimensions was only marginally better than k = 100 yet required
>30 mins to run. For computational reasons, we selected k = 100.

5.3 End-to-End Evaluation

For all subsequent experiments on real data, we use a pre-trained VGG CNN conv5_3 and encoded
with PCA with 100 dimensions.

Figure 1: We evaluate the sensitivity of two hyper-
parameters set in advance: number of PCA dimen-
sions and sliding window size. The selected value
is shown in red double circles.
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GRP PCA CCA
SIFT - 0.443±0.008 -
AlexNet conv3 0.559±0.018 0.600±0.012 0.494±0.006
AlexNet conv4 0.568±0.007 0.607±0.004 0.488±0.005
AlexNet pool5 0.565±0.008 0.599±0.005 0.486±0.012
VGG conv5_3 0.571±0.005 0.637±0.009 0.494±0.013
VGG LCD-VLAD 0.506±0.001 0.534±0.011 0.523±0.010
AlexNet LCD-VLAD 0.517±0.001 0.469±0.027 0.534±0.018

Table 1: The silhouette score for
each of the techniques and dimen-
sionality reduction schemes on a
subset of suturing demonstrations
(5 expert examples). We found
that PCA (100 dims) applied to
VGG conv5_3 maximizes silhou-
ette score

Figure 2: The figure illustrates
TSNE Plots for various layers
in Alex Net and VGG on a
video sub-sequence of a Sutur-
ing Demonstration. We note
that higher cluster compactness in
Conv4 and Conv5_3 matches with
higher ss scores above.

Suturing K Z K+Z
E 0.630±0.014 0.576±0.018 0.654±0.065
E+I 0.550±0.014 0.548±0.015 0.716±0.046Silhouette

Score E+I+N 0.518±0.008 0.515±0.021 0.733±0.056
E 0.516 ± 0.026 0.266 ± 0.025 0.597 ± 0.096
E+I 0.427 ± 0.053 0.166 ± 0.057 0.646 ± 0.039NMI Score
E+I+N 0.307 ± 0.045 0.157 ± 0.022 0.625 ± 0.034

Table 2: Comparison of TSC-DL perfor-
mance on Surgical Suturing Task. We com-
pare the prediction performance by incre-
mentally adding demonstrations from Ex-
perts (E), Intermediates (I), and Novices (N)
respectively to the dataset.

1. Surgical Suturing: We apply our method to a subset of JIGSAWS dataset, from Gao et al.
(2014), consisting of surgical task demonstrations under tele-operation using the da Vinci surgi-
cal system. The dataset was captured from 8 surgeons with 3 different skill levels, performing 5
repetitions each of suturing and needle passing. We use 39 demonstrations of a 4 throw suturing
task (Figure 3) and we manually annotate these demonstrations for reference. We apply TSC-DL
to kinematics and vision alone respectively and then the combination. With combined kinematics
and vision, TSC-DL learns many of the important segments identified by manual annotation. Af-
ter learning the segmentation, we apply it to a representative trajectory (Figure 3) and find that we
accurately recover 10 out of 15 transitions aer similar to manual labeling.

Upon further investigation of the false positives, we found that they corresponded to crucial
actions missed by manual labeling. For example, TSC-DL discovers that a crucial needle repo-
sitioning step where many demonstrators penetrate and push-through the needle in two different
motions. We find segments that correspond to linear dynamical systems, and applies this criterion
consistently. However, human annotators may miss subtle transitions such a quick two-step motion.

2. Toy Plane Assembly: In our next experiment, we explore segmenting a multi-step assembly
of a toy Plane from the YCB dataset by Çalli et al. (2015). We collect 8 kinesthetic demos of the
task on the PR2 robot. Figure 3 illustrates the segmentation for the plane assembly task. We find
the plane assembly task using kinematics or vision alone results in a large number of segments. The
combination can help remove spurious segments restricting our segments to those transitions that
occur in most of the demonstrations–agreeing in similarity both kinematically and visually.
Human Demos: We extend the toy plane assembly experiment to collect 8 demonstrations each
from two human users. These examples only have videos and no kinematic information. We note
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Figure 3: (a) The first row shows a manual segmentation of the suturing task in 4 steps: (1) Needle Position-
ing, (2) Needle Pushing, (3) Pulling Needle, (4) Hand-off. TSC-DL extracts many of the important transitions
without labels and also discovers un-labled transition events. (b) We compare TSC-DL on for the Toy Plane
Assembly task with 8 kinesthetic demos (top) and 8 human demos (bottom). No kinematics were available
for the human demos. We illustrate the segmentation for an example demo in each case. Our manual annota-
tion of the task has 5 steps and TSC-DL recovers this structure separately for both Kinesthetic demos on PR2
and Human demos with the only visual state.

that there was a difference between users in the grasping location of fuselage. We find that using
both kinematics and visual data results in ss of 0.771±0.067 (NMI:0.747 ± 0.016). While only
visual data for human demo results in ss of 0.615±0.018 (NMI: 0.766±0.078).

6. Conclusion and Future Work
We model a set of robot task demos as linear dynamical system motions that transition as switch-
ing linear dynamic system. To learn Transition clusters, the proposed algorithm TSC-DL uses
a hierarchical application of Dirichlet Process Gaussian Mixture Models (DP-GMM). TSC-DL
levarages both kinematic data along with domain independent visual feature extraction from pre-
trained CNNs. We apply TSC-DL to real data sets on (1) JIGSAWS surgical suturing, and (1) A toy
plane assembly task. We also demonstrate that TSC-DL applies to human task demos in absence of
kinematic information. On real datasets, we find that TSC-DL matches the manual annotation with
up to 0.806 NMI. Our results also suggest that including kinematics and vision results in increases of
up-to 0.215 NMI over kinematics alone. We demonstrated the benefits of an unsupervised approach
with examples in which TSC-DL discovers inconsistencies such as segments not labeled by human
annotators, and apply TSC-DL to learn across demonstrations with widely varying operator skill
levels. We also validated surgical results in a different domain with demonstrations of assembly
tasks with the PR2 and human-only demonstrations.
Future Work: Our results suggest a number of important directions for future work. First, we
plan to apply the results from this paper to learn transition conditions for finite state machines for
surgical subtask automation. The use of CNN features with fine tuning can allow for task structure
learning directly from raw data (images) in cases of sufficient data availability, as opposed to using
CNNs trained with datasets of different image statistics. Furthermore, recent advances in Recurrent
Networks and LSTMs allow temporal information capture, however they also open questions on
transferability of such features to new domains such as CNNs were used in this work.
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Appendix A.

Figure 4: We use a visual processing pipeline with deep features to construct a trajectory of high-dimensional
visual states z(t). We concatenate encoded versions of these features with kinematics and apply hierarchical
clustering to find segments.
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Figure 5: (1) A finite-state Hidden Markov Chain with Gaussian Mixture Emissions (GMM+HMM) , and (2)
TSC-DL model. TSC-DL uses Dirchilet Process Priors and the concept of transition states to learn a robust
segmentation.

We design TSC-DL to be robust to some types of variations in demonstrations. In Figure 5, we
compare the graphical models of GMM+HMM, and TSC-DL. The TSC-DL model applies Dirichlet
Process priors to automatically set the number of hidden states (regimes). The goal of the TSC-DL
algorithm is to find spatially and temporally similar transition states across demonstrations. On
the other hand, the typical GMM+HMM Baum-Welch model learns a k× k transition matrix. We
empirically find that the TSC-DL model is robust to noise and temporal variation.
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